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IX.1. INTRODUCTION. 
 
Multiuser MIMO communications from the information theory point of view 
 
Along the present section we have studied several specific multiuser multiantenna 
designs, but a natural question is: what are the “optimal” multiple access schemes? 
Information theory can be generalized from the point-to-point scenario, considered in 
chapter III, to the multiuser ones, providing limits to multiuser communications and 
suggesting optimal multiple access strategies.  
 
In chapter III we have seen that in a Gaussian vector channel y = H x + z . When 
cooperation is possible both among the transmit terminals and among the receive 
terminals, the capacity of the vector channel under a power constraint is the solution to 
the following optimization problem: 
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This leads to the well-known water- filling solution based on the singular-value 
decomposition of the equivalent channel correlation matrix 1T

z
−H R H , as it was shown 

in chapter III. As the eigenvalues majorize the diagonal of a matrix, in order to 
maximize the determinant, the transmitter correlation matrix diagonalizes the equivalent 
channel correlation. Assume that Rz=I, then the optimum Rx must have its eigenvectors 
equal to the right singular vectors of H and its eigenvalues obeying the water-filling 
power allocation on the singular values of H. Further, the receive matrix can be chosen 
to match the left singular vectors of H, so that the vector Gaussian channel is 
diagonalized into a series of independent scalar channels onto which single-user codes 
can be used to collectively achieve the vector channel capacity. But this solution is only 
possible in a cooperative scheme. 
 
When coordination is possible only among the receive terminals, but not among the 
transmit terminals, the vector channel becomes a Gaussian multiple-access channel or 
MAC channel. Although the sum capacity of a multiple-access channel is still a 
maximum mutual information , the transmit terminals of the multiple-access channel 
must be uncorrelated. Thus, the water- filling covariance, which is optimum for a 
coordinated vector channel, can no longer necessarily be synthesized. The optimum 
covariance matrix for the multiple-access channel must be found by solving an 
optimization problem that restricts the off-diagonal entries of the covariance matrix to 
zero 
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Thus, in terms of capacity, the value of cooperation at the transmitter side lies in the 
ability for the transmitters to send correlated signals. In addition, the lack of transmitter 
coordination makes the diagonalization of the vector channel impossible. Instead, the 
vector channel can only be triangularized . Such a triangularization decomposes a vector 
channel into a series of single-user subchannels each interfering with only subsequent 
subchannels. This enables a coding method based on the superposition of single-user 
codes and a decoding method based on successive decision feedback to be 
implemented. The optimal form of triangularization is a GDFE (General Decision 
Feedback Equalizer). If decisions on previous subchannels are assumed correct, GDFE 
achieves the sum capacity of a Gaussian vector 
multiple-access channel. From an algebraic point of view, when only the transmitter or 
the receiver can face the superuser channel (i.e. BC or MAC channel), the channels is 
better viewed under a two matrix decomposition, as for instance the QR or RQ. Then 
either the transmitter or the receiver can perform QH, thus, just leaving a triangular 
interference. 
 
When coordination is possible only among the transmit terminals, but not among the 
receive terminals, the vector channel becomes a Gaussian vector broadcast channel or 
BC channel.  We will see in this chapter that the sum capacity of a Gaussian vector 
broadcast channel is the saddle-point of a max-min problem 
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Although the actual noise distribution may not have the same joint distribution as the  
least favourable noise, because the marginal distributions 

izR  are the same (usually 
2

iz iσ=R I ), in a broadcast channel a transmitter designed for the least favourable noise 
performs as well as with the actual noise. The key point is that because of the lack of 
coordination, the receivers can no longer distinguish between different noise 
correlations and the capacity is as if “nature” has chosen a least favourable noise 
correlation. In other words, the capacity in BC cannot be better than in any cooperative 
situation. Thus, from a capacity point of view, the value of cooperation at the receiver 
lies in the ability for the receivers to recognize and to take advantage of the true 
correlation among the noise and received signals.  
 
Further, in the next section we will see that the structure of the sum-capacity achieving 
coding strategy for the Gaussian vector broadcast channel is a decision-feedback 
equalizer. The optimal coding strategy again decomposes the vector channel into 
independent scalar subchannels each interfering into subsequent subchannels, with the 
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interference pre-subtracted using “writing on dirty paper” coding. When full 
coordination is not possible, GDFE has emerged as a unifying structure that is capable 
of achieving the sum capacities of both the multiple-access channel and the broadcast 
channel sum capacity. 
 
Next figure plots the broadcast and mac channel structures and summarizes their 
relationship both, between them and among the point to point MIMO channel. 

 
Figure: The four channels, multiple access, broadcast, and their corresponding point-to-
point channels, depicted along with the relationship between their capacities. 
 
The study of the multiuser channels is a topic which is not closed in the literature. This 
chapter differs from many of the existing works because it aims at presenting the basics 
of the topic under a perspective as much related as possible with signal processing or 
filtering.  Thus, making the capacity results amenable to practical coding schemes, such 
as those presented in past Chapter VI. First the MAC channel is addressed, second the 
BC channel and finally considerations on practical multiuser schemes or schedulers are 
presented. 
 
Along the chapter there are two main concepts that are widely used: 
 
A.- Assume that y =H x + w then R=I(X,Y) 
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And filter A is capacity lossless. For instance the MMSE is capacity lossless. 
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Observe also that there are two possible expressions for I(X,Y). When computed as 
1/2 1 /2( , ) ( ) ( / ) log H
z x zI X Y H Y H Y X= − = +I R HR H R  

When computed as ( , ) ( ) ( / ) log H
xI X Y H X H X Y= − = +I R H H  if the MMSE is 

considered, where ( ) 11H
e x
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 and 1 2e e eR R R=  (i.e. the Hadamard’s inequality fulfils with equality) 

then there is maximum rate transfer from x1 to x1’ and from x2 to x2’ 
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We note that equality is fulfilled when Re is diagonal, that means that E{e1.e2}=0, 
which is not equivalent to saying that E{x1’.x2’}=0. 
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IX.2. MIMO Multiuser MAC CHANNEL.  
 
IX.2.1. MAC Capacity region 
 
In the point to point case, the capacity of a channel provides the performance limit: 
reliable communication can be attained at any rate R<C; reliable communication is 
impossible at rates R>C. In the multiuser case, we should extend this concept to a 
capacity region C: this is the set of all pairs (R1,R2) (i.e. in the 2 user case) such that 
simultaneously user1 and user2 can reliably communicate at rate R1 and R2, 
respectively. Because signalling dimensions can be allocated to different users in an 
infinite number of different ways, multiuser channel capacity is defined by a rate region 
rather than a single number. This region describes all user rates that can be 
simultaneously supported by the channel with arbitrarily small error probability. From 
this capacity region, one can derive other scalar performance measures of interest.  
 
For example, the symmetric capacity 
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Is the maximum common rate at which both the users can simultaneously reliably 
communicate. 
 
The sum capacity 
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Is the maximum total throughput that can be achieved. 
 
With a single receive antenna at the Base station or access point, the capacity region of 
the two-user MAC or uplink channel is defined by the following equations 
 

 
Where P1 and P2 are the average power constraints on users 1 and 2 respectively. The 
individual rate constraints correspond to the maximum rate that each user can get if it 
has the entire channel to itself; the sum rate constraint is the total rate of a point-to-point 
channel with the two users acting as two transmit antennas of a single user, but sending 
independent signals. The three constraints define the pentagon of the figure, where, for 
instance, point C is obtained after matched filtering for each of the users. 
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Figure: MAC capacity region for the single tx. antenna. For 2 users is the so-called 
Cover-Wyner pentagon 

 
 
The capacity region of the multiple access channel is the convex hull1 of the union of 
these pentagons over all possible independent input distributions subject to the 
appropriate individual average cost constraints, i.e., 
 

 
 
The convex hull operation means that we not only include points such C, but also all 
their convex combinations: ( )1 21 0 1R Rα α α+ − ≤ ≤  (i.e. the diagonal lines in the 
figure). This is natural since the convex combinations can be achieved by time-sharing. 
The diagonal lines in the figure correspond to time-sharing access. For the MAC 
channel with single transmit antennas, the capacity region is a pentagon, because there 
is a unique set of input distributions that simultaneously maximizes the different 
constraints for R1, R2 and R1+R2. With a single transmit antenna at each user, the 
transmitter architecture simplifies considerably: there is only one data stream and the 
entire power is allocated to it. By varying the power allocations (in the case of full 
CSIT), the users can communicate at rate pairs in the union of the pentagons, which is 
itself a pentagon. For example, 2 users SDMA with multiple antenna just at the base 
station is a natural extension of the single antenna case  
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Figure: MAC capacity region for single tx antenna. For 2 users is the so-called Cover-

Wyner pentagon 
 

The right hand side of the third inequality is the sum capacity and it is the total rate 
achieved in a point-to-point channel with the two users acting as two transmit antennas 
of one user with independent inputs at the antennas. Note that  
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and to get some insight this expression can be further work out and results that there is a 
gain in rate when using multiple antennas at reception if the channels of the users are 
not orthogonal 
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To define the capacity region in the general case of Ntot! users, and MIMO multiuser 
access, we can extend the previous region to 
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with constraints on each users power [ ]k ktr P=R . The last inequality is upperbounded 
by the superuser capacity, which is a generalization of that obtained for the single 
transmitting antenna case. 
 
This inequalities that define the MAC capacity region can be summarized in a single 
inequality and the MAC capacity region can be defined in the following more compact 
way 
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In the convex hull process, however, if there are multiple transmit antenna at the users, 
no single pentagon may dominate over the other pentagons (as it is shown in next 
figure).  

 
 

Figure: The achievable rate regions (pentagons) corresponding to two different input 
distributions may not fully overlap with respect to one another. Multiple transmitting 

and receiving antennas. 
 
In that case, there is no single choice of covariance matrix that simultaneously 
maximize the constraints: the capacity region is the convex hull of the union of the 
pentagons created by all the possible covariance matrices (subject to the power 
constraints on the users). The global capacity region is generated by the union of such 
polyhedrons, each one corresponding to a specific power allocation satisfying the power 
constraints. The resulting boundary of the global capacity region is curved, except at the 
sum rate point, where the boundary is a straight line, and it is generated by the union of 
well-selected vertices. At point C, user1 is decoded last and achieves his single-user 
capacity by choosing R1 as a waterfill of the channel H1 (independent of H2 or R2). 
User 2 is decoded first, in the presence of interference from user 1, so R2 is chosen as a 
waterfill of the channel H2 and the interference from user1. The sum-rate corner points 
A1 and B1 are the two corner points of the pentagon corresponding to the sum-rate 
optimal covariance matrices 1 2,sum sumR R . We will see in IX.2.2. that at point A1 user 1 is 
decoded last, whereas at point B1 user 2 is decoded last. Thus, points A1 and B1 are 
achieved using the same covariance matrices but different decoding orders. 
 
With multiple transmit antennas, we have a choice of power splits among the data 
streams and also the choice of the rotation U before sending the data streams out of the 
transmit antennas. We recall that in the time- invariant point-to-point MIMO channel, 
the rotation matrix U was chosen to correspond to the right rotation in the singular value 
decomposition of the channel and the powers allocated to the data streams correspond to 
the waterfilling allocations over the squared singular values of the channel matrix. In the 
MAC MIMO, in general, different choices of power splits and rotations lead to different 
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pentagons and the capacity region in general is not a pentagon. This is because, unlike 
the single transmit antenna case, there are no covariance matrices Rk, that 
simultaneously maximize the right hand of the all the inequalities. Depending on how 
one wants to trade off the performance of the two users, one would use different input 
strategies. In any case, note that the sum capacity is concave on R i, thus, in general 
there is no closed-form solution to the optimization problem considering sum rate, but 
efficient algorithms that arrive at numerical solutions exist. The obtained sum-rate 
maximizing covariance matrix of any user in the system should be the single-user 
water-filling covariance matrix of its won channel with noise equal to the actual noise 
plus the interference from the other K-1 transmitters [45]. 
 
 
The question to answer is what is the optimal receiver architecture that achieves sum 
capacity. How can corner points A1 and B1 be reached? Next section presents the 
Decision Feedback structure as the one that answers these questions.  
 
IX.2.2. Decision Feedback equalizer and MAC sum capacity 
 
The DFE structure achieves the entire capacity region of the multiple-access channel. 
 
The DFE structure  
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where xi (i=1,2) are vectors and they are statistically independent, therefore, Rx is a 
block diagonal matrix (in contrast to the BC channel as we will see later on). 
 
Next we show that the DFE decomposes the vector channel into two subchannels that 
can be independently encoded and decoded because of the error diagonalization that the 
DFE performs. The achievable rates of the two subchannels are R1=I(X1’,X1) and 
R2=I(X2’,X2), being xi’ the output that estimates each subchannel xi at the output of 
the DFE, and the sum rate is R1+R2=I(X;Y). Thus, the DFE is capacity lossless). In 
order to prove it 2 key ideas are involved: 1) the MMSE filter is capacity lossless, in 
terms of sum capacity, 2) block Cholesky factorization of the minimum MMSE noise 
matrix. 
 
Next consider the following figure, where A is the MMSE filter 

 
 
1.- The MMSE filter is capacity lossless: I(X;Xm)=I(X;Y) 
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Let x=xm+e, where E{xm,e}=0 thus 
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mx =AHx+Az  with e=Az. Taking into account that the MMSE filter 
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That the independent decoding of x1 based on x1m and decoding of x2 based on 
x2m are capacity-lossy. 
 
The goal of the DFE is to use a decision-feedback structure to enable the independent 
decoding of x1 and x2. This is accomplished by a diagonalization of the MMSE error e, 
while preserving the “information” in xm. 
 
2) The diagonalization of the MMSE error can be done via a Block Cholesky 
factorization as follows  
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Thus e’ is uncorrelated. From equation (*) we get 
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Which gives the DFE structure of the new receiver shown in the figure, where the 
feedback filtering part can be implemented a successive interference cancellation due to 
the triangular structure of G. Note that in case Re were factorized following the SVD 
decomposition, then the successive interference cancellation interpretation is lost. 
 
The achievable rates of the two subchannels are 
 

'
1 1 1

2'
2 2 2

2

' '
1 2 1 1 2 2

1
( ; ) log

2

1
( ; ) log

2

1
( ; ) ( ; ) log ( ; )

2
x

R I X X

R I X X

R R I X X I X X I X Y

= =

= =

+ = + = =

1

e'1

e'

e

R
R

R
R

R

R

 

 
Thus, proving that the GDFE is capacity lossless. Note that now the independent 
decoding of x1 based on x1’ and decoding of x2 based on x2’ are capacity-lossless. 
Therefore, trying to obtain a diagonal error matrix is useful both, in terms of BER, 
because there is no interference among branches, as seen in past chapters [tesis Daniel 
Palomar], and in terms of capacity. 
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In  order  to obtain the specific rates for each user when the DFE is used, the block 
Cholesky factorization2 may be computed explicitly as 
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The third equation says that the total throughput cannot exceed the capacity of a point-
to-point AWGN channel with the sum of the received powers of the 2 users. This is a 
valid constraint since the signals of the two users are independent. Without this third 
equation, the capacity region would have been a rectangle and each user could 
simultaneously transmit at the point-to-point AWGN channel with the sum of the 
received powers of the 2 users. This is a valid constraint since the signals of the two 
users are independent.  
 

                                                 
2 Aside from the SVD decomposition, other matrix factorizations are going to be considered along this 

chapter : Cholesky factorization consists in TA = BB where A is square and B is a lower triangular 

matrix; LU factorization consists in HA=LDU where A is square, L is lower triangular, D is diagonal 

and UH is upper triangular; QR factorization A=QR  where A does not need to be square, Q is 
orthonormal and R is upper triangular. 
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Note that, in general, for Ntot users,  
 

1 1

1 1 1 11
1 1

11

log log ... log ... log
tot

i i i i i iN Ntot
i j i Ntot

i
i i

i i ii i i
i Ntoti j

R
= =

= =

= −= −

+ +
= + = + + + + +

++

∑ ∑
∑ ∑

∑∑

H H

H H
i i i

HH

I H R H I H R H
I H R H I H R H

I H R HI H R H

 
Usually, the users are ordered 1 2 ... Ntot≤ ≤ ≤h h h , in that case, the rate achieving sum 
MAC capacity is 
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For only multi-antenna at reception, if Ntot=2 users, with the DFE 
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In conclusion, the DFE achieves de sum capacity of the MAC channel.  
 
Other receiver structures 
 
We observe that the user rates Ri that achieve sum capacity require certain degree of 
interference among users in this way the transmission benefits from all the multiplexing 
gain that is offered by the multi-antenna channel, as we have commented before. This 
solution might cause, however, big difference among users depending on their channel. 
Any receiver structure that would try to null the interference (as for instance Zero 
Forcer), thus trying to make the reception more fair for all users, would decrease the 
rate. In any case, for low SNR or SNIR scenario, or if fairness is required, the DFE 
might not be realistic because, due to error propagation, the sum rates will not be 
obtained, thus requiring either a more sophisticated Maximum Likelihood detection or 
some interference cancellation scheme. Suboptimal theoretically speaking but more 
realistic if the actual throughput is the main concern, as indicated in next figure. 
 
In general, there are Ntot! corner points on the boundary of the capacity region and each 
corner point is specified by an ordering of the Ntot users and the corresponding rates are 
achieved by an DFE receiver with that ordering of cancelling users.  
 
IX.2.3. Fading channel 
  
If the communication is over several coherence intervals of the user channels the new 
capacity region is  
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If only there are multi-antenna at reception, the regions are defined by 
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With a sufficiently random and well-conditioned channel matrix H, the performance 
gain is significant. 

 
Figure: Throughput regions (that account for BER) for the ZF and DFE 

 
IX.2.3.1. Only CSIR 
 
In the case of i.i.d Rayleigh fading model, the capacity achieving power allocation is 
equal powers to the data streams (as in the point-to-point MIMO) 
 
IX.2.3.2. Full CSIT and CSIR 
 
In a MIMO MAC channel, the situation of full CSI is an unrealistic one due to the 
increase in number of parameters to feedback (so that the users can change their 
transmit strategies as a function of the time-varying channels). A more realistic situation 
is when only the receiver has multiple antenna. 
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Only multi-antenna at reception 
 
Now the users can vary their transmit power as a function of the channel realizations; 
still subject to an average power constraint. If we assume 2 users 

[ ]1 2( , ) 1,2kE P P k≤ =h h  
 
In the point-to-point channel, we have seen that the power variations are waterfilling 
over the channel states. To get some insight into how the power variations are done in 
the uplink with multiple receive antennas, let us focus on the sum capacity 
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where the power allocations are subject to the average constraints. Firstly, note that in 
the MAC channel with a single receive antenna at the base-station 
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where, a global power constraint is considered, the power allocation that maximizes 
sum capacity allows only the best user to transmit 
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Thus, following a so-called opportunistic strategy.  
 
In the MAC channel each user is received as a vector (hk for user k) at the base-station 
and there is no natural ordering of the users to bring this argument forth here. Still the 
optimal allocation of powers can be found using the Lagrangian techniques, but there is 
no closed form solution. However, with both nr and Ntot large and comparable, there is 
a simple policy close to the optimal one: every user transmits and the power allocated is 
waterfilling over its own channel state 
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where, Io itself is a function of the power allocations of the other users (which 
themselves depend on the power allocated to user k). However if Ntot and nr are large 
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enough, Io converges to a constant in probability. As usual, the water level λ is chosen 
such that the average power constraint is met. 
 
If we compare the last proposed waterfilling allocation with the opportunistic one with 
one receive antenna. The important difference is that when there is only one user 
transmitting, waterfilling is done over the channel quality with respect to the 
background noise. However, here all the users are simultaneously transmitting, using a 
similar waterfilling power allocation policy. The waterfilling is done over the channel 
quality (the receive beamforming gain) with respect to the background interference plus 
noise: this is denoted by the term Io. Note that the multiuser diversity gain is lost, which 
is called hardening effect. The traditional receive beamforming power gain is balanced 
by the loss of the benefit of the multiuser diversity gain (which is also a power gain) due 
to the “hardening” of the effective fading distribution: 

2

k rn≈h . In particular, at high 
SNR the waterfilling policy simplifies to the constant power allocation at all times (if 
nr>Ntot). 
 
A different result is obtained if nr is fixed and Ntot goes to infinite. In this case we can 
still talk of multiuser diversity gain, which is achieved by carrying out an opportunistic 
policy based on the users SNIR, and it is the basis of many practical schedules as we are 
going to see in the section dedicated to the BC channel. 
 
 
IX.3. MIMO BROADCAST CHANNEL. 
 
In our discussion of receiver architectures for point-to-point communications and the 
MAC channel, we boosted the performance of linear receivers by adding successive 
cancellation. Is there something analogous in the BC channel as well? 
 
IX.3.1. Sum capacity in SISO BC channel 
 
This section characterizes the sum capacity of a class of Gaussian vector broadcast 
channels where a single transmitter with multiple transmit terminals sends independent 
information to multiple receivers. Coordination is allowed among the transmit 
terminals, but not among the receive terminals. The sum capacity is shown to be a 
saddle-point of a Gaussian mutual information game, where a signal player chooses a 
transmit covariance matrix to maximize the mutual information and a fictitious noise 
player chooses a noise correlation to minimize the mutual information.  
 
The sum capacity is achieved using a precoding strategy for Gaussian channels with 
additive side information noncausally known at the transmitter. The optimal precoding 
structure is shown to correspond to a decision-feedback equalizer that decomposes the 
broadcast channel into a series of single-user channels with interference pre-subtracted 
at the transmitter. 
 
The figure illustrates a N user (out of Ntot users) BC channel, where independent 
messages are jointly encoded by the transmitter x, and the receivers are each responsible 
for decoding the messages, respectively. 
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Broadcast channel 

 
The sum capacity result has also been obtained in simultaneous and independent work 
by D.Tse and A. Goldsmith These two separate pieces of work arrive at essentially the 
same result via a duality relation between the multiple-access channel capacity region 
and the dirty-paper precoding region for the broadcast channel. The proof technique 
contained in this section is different in that it reveals an equalization structure for the 
optimal broadcast strategy. This decision-feedback equalizer viewpoint leads directly to 
a path for implementation, thus connecting with the structures that have been given in 
chapter VI. It also makes the capacity result amenable to practical coding schemes. 
 
Further, the result in this section is in fact more general than that of D. Tse and A. 
Goldsmith. The presented results apply to broadcast channels with arbitrary convex 
input constraints, while the results of Tse and Goldsmith appear to be applicable for 
broadcast channels with a total power constraint only. First we address the sum capacity 
optimization, the capacity region for the vector broadcast channel is addressed later on 
in this section. 
 
The BC channel can be formulated as 
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or, under a superuser formulation (where the number of scheduled users N coincides 
with the total number of users Ntot) 

 
This section characterizes the maximum sum rate R1+R2. The development here is 
restricted to the two-user case for simplicity. 
 
When a Gaussian broadcast channel has a scalar input and scalar outputs, it can be 
regarded as a degraded broadcast channel (see chapter VI) for which the capacity region 
is well established. Intuitively, this means that one user’s signal is a noisier version of 
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the other user’s signal. The capacity region for a degraded broadcast channel is achieved 
using a superposition coding and interference subtraction scheme due to Cover. The 
“dirty paper” result by Costa gives us another way to derive the degraded Gaussian BC 
channel capacity. Let us go first for the Cover’s scheme. Consider the Gaussian scalar 
broadcast channel 
 
y1=x+z1 
y2=x+z2 
 
where x is the scalar transmitted signal subject to a power constraint P. Assume that 

1 2σ σ<  . Then , z2 can be rewritten as z2=z1+z’, where z’ is 2 2
2 1(0, )N σ σ−  is 

independent of z1. Since z2’ has the same distribution as z2, y2 is now equivalent to 
y1+z’. Thus, y2 can be regarded as a degraded version of y1. The capacity region for a 
degraded broadcast channel si achieved by dividing the total power into P1=aP and 
P2=(1-a)P (0<a<1) and to construct two independent messages, one codeword is chosen 
from each codebook, and their sum is transmitted. Because y2 is a degraded version of 
y1, the codeword intended for y2 can also be decoded by y1. Thus, y1 can subtract the 
effect of the codeword intended for y2 and can effectively get a cleaner channel with 
noise power 2

1σ  instead of  2
1 2Pσ + . 

 
Recalling chapter VI, the following rate pair is achievable: 
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It can be shown that, when  1 2σ σ>  the above rate region is smaller than the true 
capacity region formulated next 
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Thus, the decoding order matters. This successive cancellation scheme can be carried 
out at the transmitter instead of doing it at the receiver, thus resulting the so-called Dirty 
Paper coding. It was proposed by Costa and it also achieves capacity in the BC SISO 
channel. In DP, the code for x2 is written on a paper got in dirt by the code of signal x1. 
In this way, the degraded channel is not necessary.   
 
When a Gaussian BC channel has a vector input and vector outputs, it is no longer 
necessarily degraded, and superposition coding is no longer capacity achieving. For 
instance, if a linear superposition of signals is transmitted at the base-station 
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Then each user’s signal will be projected differently onto different users, and there is no 
guarantee that there is a single user who would have sufficient SIRN to decode 
everyone else’s data.  However, the  “dirty-paper” result by Costa can be extended to 
the vector case to presubtract multiuser interference at the transmitter, again with no 
increase in transmit power. Next, the rest of the section is devoted to obtain the 
precoding scheme that emulates dirty paper coding, thus achieving the sum capacity in a 
broadcast channel:  
 

- First, we establish the relationship between the BC sum capacity and that in a 
cooperative scheme, both for MIMO. As a result, the optimal transmitter correlation 
matrix is designed. 

 
- Second, from the optimal Rx, a capacity lossless precoder is designed in order 

to obtain independent reception process for each signal xi, thus suitable for BC. The 
final scheme is called DP precoder and is based on the GDFE. 

 
- Third, the optimal power loading at the transmitter is obtained 
 
- Finally, we obtain the sum capacity as an aggregation of each stream rate and 

comment its relationship with the MAC sum capacity thanks to the existing duality 
among them. 
 
IX.3.2. BC sum capacity and cooperative sum capacity for MIMO 
 
Let us consider a 2 user BC channel 
 

 
Because y1 and y2 cannot coordinate in a broadcast channel, the BC capacity does not 
depend on the joint noise distributions and only on the marginals. This is so because 
two broadcast channels with the same marginals but with different joint distribution can 
use the same encoder and decoders and maintain the same probability of error.  
 
Let us first show an example that illustrates Sato’s bound: the least favourable noise 
correlation depends on the structure of the channel (as α depends on the channel). 
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Simple BC channel 
 
Consider the two-user two-terminal broadcast channel shown in above figure where the 
channel from s1 to y1 and the channel from s2 to y2 have unit gain, and the crossover 
channels have a gain a. Assume that s1 and s2 are independent Gaussian signals and z1 
and z2 are Gaussian noises all with unit variance. The broadcast channel capacity is 
clearly bounded by I(X1,X2;Y1,Y2). This mutual information is a function of the 
crossover channel gain and the correlation coefficient r between z1 and z2. Consider the 
case α=0. In this case, the least favourable noise correlation is r=0 . This is because if z1 
and z2 were correlated, decoding of y1 would reveal z1 from which z2 can be partially 
inferred. Such inference is possible, of course, only if y1 and y2 can cooperate. In a 
broadcast channel, where receivers y1 and y2 cannot take advantage of such correlation, 
the capacity with correlated and is the same as with uncorrelated z1 and z2. Thus, 
regardless of the actual correlation between z1 and z2 , the broadcast channel capacity is 
bounded by the mutual information evaluated assuming uncorrelated noise. Consider 
another case α=1 . The least favourable noise here is the perfectly correlated noise with 
r=1. This is because r=1 implies z1 and z2 equals. So, one of y1 and y2 is superfluous. 
If z1 and z2 were not perfectly correlated, collectively would reveal more information 
than y1 or y2 alone would. Since r=1 is the least favourable noise correlation, the 
broadcast channel sum capacity is bounded by the mutual information assuming r=1.  
 
The previous explanation justifies that the cooperative capacity of the Gaussian vector 
channel with a least favourable noise bounds the capacity for the Gaussian broadcast 
channel 
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Sato’s outer bound states that the broadcast channel sum capacity is bounded by (cannot 
be better than) the capacity of any discrete memoryless channel whose noise marginal 
distributions are equal to p(zi). The tightest outer bound is then the capacity of the 
channel with the least favourable noise correlation. Therefore, 
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Additionally, although the actual noise distribution may not have the same joint 
distribution as the least favourable noise, because the marginal distributions are the 
same, a precoder designed for the worst noise and to require independent receivers, is 
oblivious of the correlation between zi’s and performs as well as with the actual noise. 
Therefore, 
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If the function is convex-concave it has a saddle point and therefore 
min max ( , ) max min ( , )x y y xf x y f x y= . This is our case3, therefore 
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In order to obtain the optimal transmitter correlation matrix the max-min problem has to 
be solved. 
 
The task of finding the least favourable noise correlation can be formulated as the 
following optimization problem. 
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To solve the problem we derive the Lagrangian 
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and the least favourable noise is when its correlation matrix fulfils that  
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or equivalently 
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Note that although the actual noise distribution may not have the same joint or cross 
distribution as the least favourable noise, the marginal distributions coincide. To 
interpret the obtained condition we can rewrite it in terms of the equivalent channel 
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% % . Then the condition can be seen as 

imposing block diagonal structure on the correlation matrix of the received signal after 
the whitening filter. 
 
In order to find Rx, note that the presented optimization problem suggests the following 
game-theoretical interpretation for the Gaussian vector broadcast channel. There are two 
players in the game. A signal player chooses an Rx to maximize the mutual information 
I(X;HX+Z) subject to the constraint tr(Rx)<=P . A noise player chooses a fictitious 
noise correlation Rz to minimize the mutual information subject to the constraint Rzi=I.  
A Nash equilibrium in the game is a set of strategies such that each player’s strategy is 
the best response to the other player’s strategy. The Nash equilibrium in this mutual 
information game exists, and the Nash equilibrium corresponds to the sum capacity of 
the Gaussian vector broadcast channel. 
 
This max min scheme can be easily solved whenever a saddle point exist. Such a saddle 
point will be the Gaussian Broadcast channel sum capacity, and its calculations depend 
on both Rx and Rz. The saddle-point property of the Gaussian broadcast channel sum 
capacity implies that the capacity achieving is such that Rx is the water-filling 
covariance matrix for Rz ,and Rz is the least favourable noise covariance matrix for Rx. 
In fact, the converse is also true. This is because the mutual information is a concave–
convex function, and the two KKT conditions, corresponding to the two optimization 
problems are, collectively, sufficient and necessary at the saddle-point. Thus, the 
computation of the saddle-point is equivalent to simultaneously solving the water-filling 
problem and the least favourable noise problem. 
 
One might suspect that the following algorithm can be used to find a saddle-point 
numerically. The idea is to iteratively compute the best input covariance matrix for a 
given noise covariance, then compute the least favourable noise covariance matrix for 
the given input covariance. If the iterative process converges, both KKT conditions are 

satisfied, and the limit must be a saddle-point of 
1
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. Although such an 

iterative min-max procedure is not guaranteed to converge for a general game even 
when the payoff function is concave–convex, the iterative procedure appears to work 
well in practice for this particular problem. The convex–concave nature of the problem 
also suggests that general-purpose numerical convex programming algorithms can be 



22/12/2005                                                                Cap. IX Pag25-57   

used to solve for the saddle-point with polynomial complexity.  Finally, the main sum 
capacity result can be easily generalized to broadcast channels with an arbitrary convex 
input constraint. This is so because the saddle-point for the mutual information 
expression is Gaussian as long as the input and noise constraints are convex. 
 
Once Rx and Rz have been obtained by convex optimization, as for instance using the 
interior-point method, it just remain to make a connection between the transmitted 
symbols and the input data u, this is accomplished by the precoding matrix B. 
 
IX.3.3. Precoder design 
 
IX.3.3. 1. Towards non-cooperative receivers  
 
Consider a Gaussian vector channel y=Hx + z. Assume that H is a square matrix. If the 
noise covariance matrix Rz is not block-diagonal, a noise whitening filter is required as 
a first step at reception. Suppose that the noise covariance matrix has an eigenvalue 
decomposition 

T
z =R Q ? Q  

If in addition, the transmitter covariance matrix Rx is also not block-diagonal, then a 
Gaussian source u and a transmit filter B can be created such that Ru=I and x=Bu. Let 
the SVD of the optimal Rx obtained in the previous section be 
 

T
x = = HR VS V B B  

The appropriate transmit filter has the form 
 

B = V S M  
 
where M is an arbitrary orthonormal matrix. It consists on a beamforming matrix V, a 
power allocation matrix Σ  and a precoding matrix M whose whole is to carry out a 
proper interference cancellation in order to achieve capacity by decoupling the BC 
channels. The dimensions of M are the same dimension as Rz, thus, number of receiving 
antennas. So, the rank of Rx is always equal to or lower than the rank of the superuser 
channel. When Rx is of strictly lower rank, zeros can be padded in the channel to make 
the effective channel matrix a square matrix 
 

0[  ]0=T
x oR = VS V S S  

 
In order to design B, let us take the configuration of the figure with MMSE reception, 
which is capacity lossless. The goal is to obtain a precoder B such that reception can be 
independently done by each receiver 
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Figure: MMSE configuration 

 
Note that the transmit filter and the noise whitening filter create the following effective 
channel 
 

 
Intuitively, the transmitting matrix M should transform this equivalent channel into a 
block diagonal channel so that each receiver could carry out independent reception. This 
is precisely the condition that we have obtained in order to solve the maxmin problem 
formulated before, where  
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being Φ i the dual variables of the optimization problem. 
 
If the DFE receiver of the figure is considered because it allows maximal rate transfer to 
each parallel channel, then the whole system up to obtaining signal v is block diagonal 
(a more detailed solution of the problem is described in Appendix A).  
 

Figure: DFE receiver 
 
There are still one question to answer before obtaining a complete precoding design:  

- to complete the decoupled receiver design by transferring G-1 to the transmitter 
if possible. 
 
IX.3.3.2. Complete decoupled receiver design that achieves Csum: GDFE precoder 
versus DP precoder  
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In order to finally get a decoupled receiver design, the feedback filtering at reception 
can be transferred to the transmitter side, so called decision feedback precoder, which 
results in a similar concept to DP coding. 
 
The final design of the transmitter is then the one proposed in the figure 

 
 

GDFE precoder and matrix B for achieving BC sum capacity 
 
 
Therefore, matrix B is completed with G-1 implemented in a feedback way, in order to 
preserve capacity as appendix B shows. Thanks to the feedback implementation, the 
precoder follows a Dirty Paper philosophy. For instance, the transmitter first picks a 
codeword for receiver 2 with full (noncausal) knowledge of the codeword intended for 
receiver 1. Therefore, receiver 2 does not see the codeword intended for receiver 1 as 
interference. Similarly, the codeword for receiver 3 is chosen such that receiver 3 does 
not see the signals intended for receivers 1 and 2 as interference. This process continues 
for all K receivers. Receiver 1 subsequently sees the signals intended for all other users 
as interference, receiver 2 sees the signals intended for users 3 to K as interference, etc. 
Note that the ordering of the users clearly matters in such a procedure. 
 
There is one aspect left and it is regarding the question whether the structure of the 
GDFE precoder is capacity lossless or not. The answer is yes, it is capacity loss-less and 
the prove can be found in the work done by Cioffi and also considered in the appendix 
B of this chapter.  
 
To sum up, with the least favourable noise, there exists a GDFE structure with a block –
diagonal feedforward filter. This, together with a precoder B, eliminates the need for 
coordination at the receiver. Thus, the precoding GDFE achieves the BC sum 
capacity and the precoding matrix B has been obtained. 
 
Algorithm for achieving Csum at broadcast: 
 

1. Solved the maxmin problem and get the best Rx for the worst Rz 
2. From the convex optimization problem get the dual variables iF  

3. From Rx and iF , obtain B = V S M that decouples in an optimal way part of 
the lossless MMSE receiver 
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4. The rest of the receiver is G-1, which is moved to the transmitter. When 
implemented as a feedbackward filtering, the final transmitter structure emulates 
the DP precoding philosophy. Recall that: 
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IX.3.4. BC sum capacity and MAC-BC duality  
 
The DFE transmit filter B designed for the least favourable noise also identifies the set 
of sum capacity-achieving R i. For example, for the 2 user case,  
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which are the rates that are obtained in the appendix B for DFE precoding (reversing the 
orders of user 1 and 2) and are also called dirty paper rates. 
 
For the general case of K users, the rate for user i that achieves sum capacity is  
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where users are ordered in increasing order. One important feature to notice about the 
dirty paper rate equations is that the rate equations are neither a concave nor a convex 
function of the covariance matrices. This makes finding the dirty paper region very 
difficult, because generally the entire space of covariance matrices which meet the 
power constraint must be searched over. This justifies our focus under a filtering 
perspective that departs from the MAC channel instead of directly obtaining the 
precoders for each user from the general maxmin problem. 
 
The sum capacity is 
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Note also that the same rates sum capacity was obtained for the MAC channel with DFE 
reception. This is also called MAC-BC duality [44]: the capacity region of the BC 
channel can be obtained with the union of MAC capacity regions with equal average 
power constraints and not allowing to the transmitters to cooperate in the MAC. One 
key point is that to achieve the same rate vector in the BC and MAC, the decoding order 
must in general be reversed, i.e., if user 1 is decoded last in the BC then user 1 is 
decoded first in the MAC. Exploiting duality, in [43], Goldsmith proposes an alternative 
algorithm for the iterative design of the precoder in a MIMO BC channel. 
 
In order to get some insight into the sum rate expression, note that in the case of only 
multiple antenna at the transmitter with MMSE decoding, the sum rate results in 

(**) 
 
Being the last term of the equality very useful when designing practical precoding 
schemes for BC with the aim of sum rate maximization. Caire and Shamai proposed in 
[7], for the case of only antennas at transmission, that the components of u should be 
generated by successive dirty-paper encoding with Gaussian codebooks and B should 
maximized (**) over all precoding matrices B satisfying the trace or power constraint. 
For the 2 user case with 1 antenna per user they obtained that 
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As a conclusion,  
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or in the case of just multiple antenna at the transmitter 
 

 
Multiuser diversity 
 
If both the transmitter and receivers know the channel perfectly in a BC with Ntot 
single-antenna receivers with average transmit power of nt SNR and the transmitter has 
nt antennas, then for sufficiently large Ntot, the sum rate capacity scales like 

 
Where nt and SNR are fixed.  
 
In order to prove it observe that 
 

 

Where we have used the inequality 
( )

det( )
M

MxM

tr
M

 ≤  
 

A
A . As Ntot goes to inf. the 

max behaves like log Ntot+O(log log Ntot).  
 
Compared to the single user capacity of nt log(1+SNR), we observe that the sum-rate 
increases double- logarithmically in Ntot.. Thus, the multiuser diversity gain increases 
SNR by a factor of logNtot. This is precisely the basis of the so-called opportunistic 
schemes, which jus t need SNIR feedback instead of the whole knowledge of H. Due to 
its importance in practical scheduler we devote later on a specific section to study these 
schemes.  
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Next low complexity alternatives to the optimal precoding are proposed. Note that if 
only the transmitter can be designed taking into account the superuser channel H, a two 
matrix decomposition of the channel is desirable, rather than a 3 matrix decomposition 
as the SVD. Cholesky, QR or LU decompositions are possible candidates that may lead 
to designs different from the one proposed. When full CSIR or CSIT is available, 
optimal structures in MAC or BC carry out a successive interference cancellation or 
signal encoding respectively. However, other solutions can be found in between that 
trade-off performance and complexity in implementation and in required CSI. When 
studying these alternative schemes, note that duality between MAC and BC can be 
carried out, thus transferring receiving filters to the transmitter and the other way round. 
When doing that one must be careful in not incurring in any capacity loss or 
transmitting power increase. 
 
IX.3.5. Low complexity precoding structures 
 
Chapter VI was precisely devoted to this subject. Low complexity precoding structures 
were obtained based on the idea extending the “dirty paper” concept of the degraded BC 
to the non-degraded one (that appears when either multiantenna are present at 
transmission or reception). Intuitively, this extension relates with moving the 
feedbackward part of the DFE at the transmitter. This implies a “triangular interference 
cancelling”, that allows for interference suppression without increase in the transmitted 
power, in contrast to a straight forward Zero Forcing precoding. Matching intuition with 
theory, this section has shown the optimality, in terms of BC sum capacity, of moving 
the feedbackward filtering of the DFE to the transmitter and has given the optimal 
design procedure for the precoding. 
 
Due to the design complexity of the optimal  precoding, in the literature there are 
various different practical implementation schemes. Although Chapter VI sums up the 
basics of these different schemes, we comment on some examples. 
 
Tomlinson-Harashima 
 
The basis of most of the practical precoders is the structure used by the Tomlinson-
Harashima precoder. In that case, an alternative to design the DFE precoding is by 
considering a QR decomposition of the channel 

HH = Q R  
 
Being R lower triangular and modifying the receiver design accordingly to next figure 
where now the output is w    
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In order to study if it is capacity lossless the correlation of the error e=w-s should be 
studied. Observe that H σ 2H

eR = GQQ G , thus diagonal and capacity lossless. However, 
if we want to obtain parallel receivers, the RQ decomposition of the channel should be 
considered, the lower triangular matrix R changes, and a different precoding structure is 
obtained, where the receivers are decoupled, thus suitable for the broadcast channel 
 

HH = R Q  
where R is a lower triangular matrix of dimension (Ntot x m) and QH is unitary of 
dimension m x nt (where m=rank(H)) 

 
where now the output is w’ 
 
w ‘= GHFx + Gz = GRQHQx + Gz = GRx + Gz=s+Gz if B=(GR)-1 
 
still being capacity lossless. 
 
Zero Forcing precoder 
 
Other examples are the studies of Caire and Shamai who compare different possibilities 
for the case of nt transmitting antennas and N users, with 1 antenna per user. In the 
precoding scheme, x=Bu, they obtained u by successive dirty-paper encoding so that 
nulling the interference terms i>j, while the remaining i<j terms are forced to zero by 
letting B=Q, where Q is the unitary matrix that results from the QR decomposition of 
the channel, H=RQ (where R is lower triangular). This suboptimal ZF-DP coding 
strategy is shown to achieve asymptotically optimal throughput for high SNR if the 
channel matrix has full row rank, while for vanishing SNR, it reduces to simple 
maximal ratio combining beamforming to the best user, which is shown to be also 
optimal in general, for low SNR. Next figure (figure 5 from [7]) plots some comparative 
results for nt=4 and N=4 users and depicts the importance of channel knowledge at the 
transmitter. Note that ZF beamforming cons ists of inverting the channel matrix at the 
transmitter in order to create orthogonal channels between the transmitter and the 
receivers without receivers’ cooperation. Although it was one of the first BC 
architectures to be studied in the literature because of it simplicity, it is not optimal as 
the figure shows. We will come to the problem of transmit beamforming design later 
on. 
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Throughput versus SNR comparison 
 
 
The practical implementation not only cares about the complexity and the tractability of 
the designed precoders/receivers, but also on the other system aspects as system 
fairness, users access control and system delay. For instance, next table (from [38]) 
compares ZF, DP-QR (with random ordering of users) and SVD precoding (called 
cooperative in the table). In all of them uniform power allocation is considered. The 
appendix compares the aforementioned techniques for the instantaneous channel case. 
 

Comparative mean SNR and variance among users, Q is the number of antenna and N 
the number of users 

 
Fairness 
 
One of the aspects in the table is the index of fairness (IF), which is defined as the ratio 
between the mean and the variance. Although ZF is the precoder with worst 
performance it is the most fair among users. When getting into multiuser systems, a new 
aspect to study is the global performance of the system versus the individual 
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performance. Depending on the desired fairness, different criteria design are to be 
chosen, which will not necessary coincide with the maximization of the sum rate. 
 
Next figure is an example of the performance of the three precoders. Again, although 
the cooperative technique is the one that offers better performance for a specific SNR, it 
is also the most unfair among users. In the scheduling section, which takes into account 
system practical aspect, we come back to this fairness issue. 
 

Comparative results for 5 users and varying number of antenna. 
 
When considering practical precoders one aspect to design is the power allocated to 
each user. Next figure compares the sum rate results when a ZF precoder is used with 
different design criteria.  
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Outage mean rate vs. the approximation of the standard deviation at 90% of SNR 
 
Note that the sum rate criterion is not necessarily the best one if fairness issues are to be 
taken into account. Note also that when designing the precoder in MIMO transmission 
the global system performance in terms of rate do not give the same results as if BER 
were the goal and it is important to know how to use the spatial degrees of freedom 
properly in terms of both, diversity and multiplexing (or rate) gain.  In SISO 
transmission this aspect was not a concern because better BER implied better rate and 
the other way round.  
 
Access Control 
 
In a cooperative transmission, since for any unitary matrix Q (permutation matrices are 
unitary), the matrix QH has the same singular values of H, the sum capacity in a 
cooperative system is independent of the user ordering. On the other hand, ZF 
beamforming depends on the choice of the unordered active user set and ZF-DP 
depends on the ordered active user set. Note that in both cases, only m=rank(H) users 
can be served simultaneously. The access control or user selection problem is still to be 
solved in many practical situations and offers an important degree of freedom that can 
be exploited in order to improve the performance of suboptimal systems. Ideally, if the 
number of users goes to infinite, a subset of users with mutually orthogonal spatial 
signatures could be found and ZF beamforming would amount to a unitary 
transformation, thus involving no power penalty and perfect user separation. This can 
be seen as another manifestation of the ubiquitous principle of multiuser diversity, that 
plays a central role in multiuser channels with fading as we will seen later on. In [38;46, 
47] the authors address the problem when ZF is applied. Note that the grouping of users 
requires an exhaustive search over the entire user set. This makes a low complexity 
implementation of the optimal ZF challenging and userful.  
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To finish this section, next, diversity optimizing techniques or transmit beamforming 
are presented. 
 
Transmit beamforming 
 
In the literature, practical schemes concentrate on the diversity advantage, that means, 
the increase of the effective SNIR at the receivers. Moreover, they are not based on 
information-theoretic issues, but rather strategies that could be currently implemented. 
In these schemes, the transmitted signal x has been substituted by a beamforming matrix 
B. The general SNIR for the kth user in the multiuser MISO system, γk, can be 
expressed as 
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The different strategies consist on transmit beamforming design and power assignment. 
The optimal beamforming strategy [46] in terms of rate is the one that 
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which is optimal for large number of users, as it achieves the same rate as DP coding 
[46] 
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but it is difficult to carry out in practice. Note that the SINR of each user in the BC 
depends in general on all the transmit signatures of the users. Hence, it is not 
meaningful to pose the problem of choosing the transmit beamformers to maximize 
each of the SINR separately. A more sensible formulation is to minimize the total 
transmit power needed to meet a given set of SINR requirements.  
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The optimal transmit signatures balance between focusing energy in the direction of the 
user of interest and minimizing the interference to other users. This transmit strategy 
can be thought of as performing transmit beamforming. Implicit in this problem 
formulation is also a problem of allocating powers to each of the users. 
 
Taking into account the uplink-downlink duality (see appendix C), the transmit 
beamforming problem can be solved by looking at the uplink dual. Since for any choice 
of transmit signatures, the same SINR can be met in the uplink dual using the transmit 
beamformer as receive filters and the same total transmit power, the BC problem is 
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solved if we can find receive filters that minimize the total transmit power in the uplink 
dual. The receive filters are always chosen to be the MMSE filters given the transmit 
powers of the users; the transmit powers are iteratively updated so that the SINR 
requirement of each user is just met. This MMSE beamformers can now be used as the  
optimal transmit beams in the BC and afterwards the optimal power allocation can be 
found. The optimal beamforming in MAC and BC are the same if power constraint is 
the same, the difference between both channels is the power that has to be allocated to 
each user. This duality is going to be used to obtain the BC capacity region in next 
section. 
 
Note that if fairness issues come into play, other strategies are possible as that in [38; 
48] the design is based on the maximization of the minimum SINR subject to a power 
constraint 

1
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kkb
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Conclusions  
 
Along this section we have shown that aside from the theoretical analysis, practicality 
aspects are really important in multiuser MIMO systems. The main aspects are: 

- The ordering of the users clearly matters in such a procedure and 
needs to be optimized in the capacity computation 

- For latency and degrees of freedom reasons (N< Ntot). Then the 
throughput can be further optimized with respect to the active user set 
and SDMA (Spatial diversity multiple access) has to be combined 
with other strategies, as for instance TDMA. These aspects refer to 
access control policies 

- The real situation is to have partial CSIT, which make optimal 
strategies such as DP unfeasible, thus requiring also for an access 
control policy. 

- When not only optimality but users priority and QoS come into play, 
fairness has to be considered. 

- Finally, in delay is also an important parameter to control in the 
network and come into play when users queues of finite length are 
considered. Although it is out of the scope of this chapter, the 
multiuser MIMO system design is narrowly related with the users 
buffer control. Some examples are shown in the last section of the 
chapter that considers the scheduling problem. 

 
Basically, in the design of a scheduler or practical broadcast system 3 questions have to 
be answered: 

- Transmitter architecture 
- Power allocation 
- Access control (i.e. number of users to give access and order) 

 
In the section devoted to scheduling these aspects are going to be considered. Next, 
before getting into the problem of partial CSIT we study the BC capacity region. 
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IX.3.6. BC capacity region 
 
When multiple users share the same channel, the channel capacity can no longer be 
characterized by single number. Since there is an infinite number of ways to divide the 
channel between many users, the multiuser channel capacity is characterized by a rate 
region.  
 
We have seen that in the MIMO BC, DP coding can be applied at the transmitter when 
choosing codewords for different users. The ordering of the users clearly matters in such 
a procedure, and needs to be optimized in the capacity calculation. Let π (.) denote a 
permutation of the user indices and [ ]x 1 KR = R ...R  denote a set of positive semi-

definite covariance matrices with ( )Tr P≤1 KR +.. .+R  . Under DP coding, if user π (1) 
is encoded first, followed by user π (2) , etc., then the following rate vector is achievable 
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The capacity region C is then the convex hull of the union of all such rates vectors over 
all permutations and all positive semi-definite covariance matrices satisfying the 
average power constraints 

,

( , ) ( , )BCC P Co R
π

π
 

=  
 R

H RU  

The transmitted signal is 1 Kx = x +. . .+x . The DP coding implies that , ,1 Kx ... x  are 
uncorrelated, and thus P≤x 1 KR = R +. . .+R  
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As we have already commented, one important feature to notice about the rate equations 
is that they are neither a concave nor convex function of the covariance matrices. 
However, by exploiting the duality between the MIMO BC and the MIMO MAC that 
can be exploited to greatly simplify this calculation. The figure outlines the capacity 
region for the BC. In a separated way, Tse (uplink-downlink duality) proved that the DP 
or DFE achievable region achieves the sum rate capacity of the MIMO Gaussian BC. 
Also Shamai (Enhanced channel and Minkowski’s inequality) showed that DP coding 
or DFE precoding achievable rate region is the capacity region of the Gaussian MIMO 
BC. 
 
The capacity region for the BC is obtained as the union of capacity regions of the dual 
MAC, where the union is taken over all individual power constraints that sum up to the 
BC power constraints 

{ }
{ }

1

1
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( , ) ,..., ;
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i ii
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=

≤

=

∑
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This leads to the conclusion that the uplink (MAC) and downlink (BC) channels differ 
only due to the fact that power constraints are placed on each transmitter in the MAC 
instead of on all transmitters jointly. As shown in the figure, every point on the 
boundary of the BC capacity region is a corner point of the dual MAC for some set of 
powers with the same sum power. Thus, the dirty paper BC achievable region equals 
the sum power MIMO MAC capacity region. Successive encoding in the transmitter 
or successive decoding in the receiver is then required to separate the different signals 
that are superimposed at the channel output in a BC or MAC channel, respectively. The 
fundamental trade-off between users is here parameterized by two components: I) the 
poser allocation, which should be performed jointly, and ii) the encoding/decoding 
order, with Ntot! Possible orderings of the users. The figure depicts that dirty paper 
coding achieves the Sato upper bound, and therefore, equals the sumrate cpacity of the 
MIMO BC [48]. 
 
Interestingly, both capacity regions are exactly the same (duality property) as soon as 
the power constraint is set on the total transmitted power. 
 
The boundary of the global capacity region can be traced out by means of a set of 
relative priority coefficients 1k

k

ξ =∑ , which control practical aspects such as fairness 

and priority aspects that appear in multiuser systems when sharing resources. Since the 
MAC capacity region is convex, it is well known from convex theory that the boundary 
of the capacity region can be fully characterized by maximizing the function 

1 1 ... K KR Rξ ξ+ +  over all rate vectors in the capacity region and for all nonnegative 
priorities. Each boundary point of the capacity region maximizes the linear combination 
of the user rates k k

k

R Rξ ξ= ∑ . The maximum aggregate rate is known to be 
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Ntot

k k
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R SNIRξ ξ
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For the BC capacity region, the same applies by duality.  
 
For a fixed set of priorities, this is equivalent to finding the point on the capacity region 
boundary that is tangent to a line whose slope is defined by the priorities. The structure 
of the MAC capacity region implies that all boundary points of the capacity region are 
corner points of polyhedrons corresponding to different sets of correlation matrices. 
Furthermore, the corner point should correspond to successive decoding in order of 
increasing priority, i.e., the user with the highest priority should be decoded last and, 
therefore, sees no interference. Thus, the problem of finding the boundary point on the 
capacity region associated with priorities 1... Kξ ξ  assumed to be in descending order. 
 

Figure: Two-user capacity region and specific points of the boundary 
 
In the next figure, the boundary of the capacity region is the curve ABCDEF. The 
extreme points F and A, on this boundary, correspond to the single-user capacities R11 
and R12 of users 1 and 2, respectively. Point E, with a local tangent at 45 degrees, gives 
the maximum sum-rate max (R1 + R2). This setting generally results in unfair situations 
where the users with the best channels have a much higher rate than the others, which is 
not desirable in practical applications. Point B, on the other hand, gives the maximum 
common rate or symmetric capacity. When the single-user rates are very different, the 
common rate constraint is generally a waste of resources as it forces the users with the 
best channels to lower their rate dramatically to reach the level of the weakest channels. 
The balanced capacity, given by point D, satisfies the relation R1=R11 = R2=R12. It 
appears as a smart compromise between the symmetric capacity B and the maximum 
sum-rate E. The line AGF represents the rate distributions obtained by using Time-
Division Multiple-Access (TDMA). Balanced rates 0.5R11 and 0.5R12 are obtained if 
time slots of equal duration are allocated to each user (point G). Higher balanced rates 
(point D) can be achieved by allowing a simultaneous transmission of signals by all 
users, with an appropriate power an spectrum allocation. In any case, the maximum 
balanced rates can be written 
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Additional requirements in terms of minimum throughput should be considered for 
some applications, where customers could pay for a minimum guaranteed service (e.g: a 
video connection), plus a best-effort service (e.g: Internet connection) with a variable 
rate that depends on network conditions. The balanced capacity criterion could then be 
applied on the variable rate only. 
 
IX.3.7. The fading channel 
 
With full CSI, both the base-station and the users track the channel fluctuations and, in 
this case, the extension of the linear beamforming strategies combined with Costa 
precoding to the fading channel is natural. Now we can vary the power and transmit 
signature allocations of the users, and the Costa precoding order as a function of the 
channel variations. Linear beamforming combined with Costa precoding achieves the 
capacity of the fast fading downlink channel with full CSI, just as in the time- invariant 
downlink channel. 
 
Due to the duality, we have a connection between the strategies for the downlink 
channel and its dual uplink channel. 
 
Next, aspects related with the practical implementation, as partial CSIT and real-time 
schedulers as fairness and access control are considered. Fairness comes to the scene 
when optimality has to be trade-off with users’ priorities. Concerning access control, 
note that up to now we have not addressed the problem of real-time access and how 
users can be ordered in practice when partial CSIT is only available, thus dirty paper 
implementation is not realistic. 
 
As we have already said, in the design of a scheduler or practical broadcast system 3 
questions have to be answered: 

- Transmitter architecture 
- Power allocation 
- Access control (i.e. number of users to give access and order) 
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IX.3.8. Sum capacity with partial CSIT 
 
When studying the sum rate in the BC channel we obtained that when the number of 
users goes to infinite and only nt antennas are at the transmitter, the dirty paper 
precoding behaves as 

 
Thus offering not only multiplexing diversity but also multiuser diversity.  
 
Another comment on the asymptotic behaviour if Ntot goes to infinite is that the 
optimal transmitter structure that maximizes the sum capacity in multiuser MIMO is 
then the beamforming [46]. 
 
However, having full CSIT requires a lot of feedback and practically it is unrealistic. 
This motivates the question of how much partial side information is needed in the 
transmitter that provides us a linear scaling of the throughput with nt and reduces the 
amount of feedback. If we resort to the asymptotic analysis for Ntot going to infinite, it 
would be desirable that the new scheme would also take advantage of the multiuser 
diversity. This is precisely the basis of the so-called opportunistic schemes, which just 
need SNIR feedback instead of the whole knowledge of H. 
 
Multiuser diversity and opportunistic transmission 
 
R. Knopp obtained in [41] that the power control scheme that maximizes the 
information ergodic capacity of the MAC in a SISO multiuser communication, is such 
that only the user with best channel transmits at a time. Note that for a scalar BC 
channel the same result applies. In the conventional TDMA scheme, the base station 
transmits to only a single user at a time. In this case, the maximum sum-rate, achieved 
by sending to the user with the largest channel gain, is given by 
 

{ } ( )2

1...
max log 1TDMA k

k Ntot
R P

∈
= + h  

and if Ntot goes to infinite, we observe that the sum-rate increases double-
logarithmically in Ntot; thus, taking advantage of the Multiuser diversity. The multiuser 
diversity effect comes from the fact that when there are many users that fade 
independently, at any one time there is a high probability that one of the users will have 
a strong channel. By allowing only that user to transmit, the shared channel resource is 
used in the most efficient manner and the total system throughput is maximized (see 
fogire). The larger the number of  users, the stronger tends to be the best channel, and 
the more the multiuser diversity gain. 
 
The work by Knopp set the basis of the so-called opportunistic schemes: the sender 
opportunistically transmits only when its channel is near its peaks (“riding the peaks”). 
These schemes are the only implementable schedulers or BC schemes in the actual 
systems. Therefore, one section is devoted to them, which will comment on the main 
system issues when implementing them. Opportunistic schemes are the best  proof of 
the benefit of letting PHY and MAC layer interact to face the problems of the mobile 
channel. 
 

{ } loglogDP

Ntot
E R nt Ntotρ

→∞
≈
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Figure: Opportunistic principle for 2 users 

 
The question we pose now is if we can extend the opportunistic waterfilling to MIMO 
BC channels? Can the MIMO BC channel enjoy of both Multiuser diversity and 
multiplexing gain? The answer is given by Hassibi in the so-called opportunistic 
orthogonal SDMA, that extends the opportunistic results of SIMO to the MIMO case.  
 
 
Opportunisitc SDMA and single antenna receivers  
 
The conceptual idea is to have multiple beams, each orthogonal to one another, at the 
same time. Separate pilot symbols are introduced on each of the beams and the users 
feedback the SINR of each beam. Transmissions are scheduled to as many users as there 
are beams at each time slot. If there are enough users in the system,  the user who is 
beamformed with respect to a specific beam (and orthogonal to the other beams) is 
scheduled on the specific beam.  
 
Let us consider 

 

 
Let us consider Ntot>=nt, otherwise, we use only Ntot of the transmit antennas. Under 
this considerations we specify N as the number of served users. Note that usually, the 
number of served users is nt, smaller than Ntot, thus requiring an access control 
mechanism, which is provided in a natural and low complexity way by the opportunistic 
scheme that is going to be introduced. On the other hand, although in the DFE precoders 
Ntot users can be served simultaneously the user ordering stage implies a lot of 
computational effort. 
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At each time m, let [ ]1( ) ( ),..., ( )ntm m m=B b b  be an nt x nt beamforming unitary matrix, 
with the columns or beams orthogonal. The vector signal sent out from the antenna 
array at time m is 

The unitary matrix B(m) is varied such that the individual components do not change 
abruptly in time. For simplicity we consider the scenario when the channel coefficients 
are not varying over the time-scale of communication (slow fading) 
 
The ith rx knows (Hi bm) m=1..nt (by training). Therefore, the ith rx can compute the 
following nt SINRs by assuming that the um is the desired signal and the other signals 
are interference as follows 

 
Note that on average the SINRs behave like 

Therefore if the beams are assigned randomly, the rate or throughput  will be 

 
Observe that there is no nt-fold in the system throughput and, therefore, CSIT is crucial. 
As an alternative Hassibi presented an scheme where nt orthogonal beams are assigned 
to nt users depending on the feedback SINR’s. In that case the same asymptotic 
multiplexing and diversity gain as dirty paper is obtained when Ntot goes to infinite.  

 
Intuitively, if the number of users is large the probability of finding nt users placed at 
the pointing directions of the nt orthogonal beams is high, thus almost nulling the 
interference among them 

 
Next figure compares the result of the opportunistic SMDA scheme with those of an 
opportunistic beamforming that serves one user at a time. Note that the opportunistic 
SDMA does not obtain higher throughput than the single beamformer if the number of 
users is small, this is due to the interference cased by the simultaneous nt beams. 
 
There are some system requirements to support multiple beams. First, multiple pilot 
symbols have to be inserted (one for each beam) to enable coherent downlink reception; 
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thus, the fraction of pilot symbol power increases. Second, the receivers now track nt 
separate beams and feedback SINR of each on each of the beams. On a practical note, 
the receivers could feedback only the best SINR and the identification of the beam that 
yields this SINR; this restriction probably will not degrade the performance by much. 
Thus, with affordable feedback the proposed opportunistic SDMA utilizes all the spatial 
degrees of freedom.  
 

 
Figure: Opportunistic SDMA vs. opportunistic single beam. 

 
The amount of multiuser diversity gain depends crucially on the tail of the fading 
distribution SNIRk: the heavier the tail, the more likely there is a user with a very strong 
channel, and the larger the multiuser diversity gain. For instance, because of the line-of-
sight component, the Rician fading distribution is less “random” and has a lighter tail 
that the Rayleigh distribution with the same average channel gain. As a consequence, it 
can be seen that the multiuser diversity gain is significantly smaller in the Rician case 
compared to the Rayleigh case.  
 
Finally, the opportunistic schemes that chose the best transmitting antenna would be 
optimal in those situations where maximal ratio combining transmission is optimal 
(e.g.if users are located in orthogonal positions) and for each user there is a predominant 
antenna in the equivalent channel response. Otherwise, these antenna selection schemes 
are suboptimal in multiuser scenario. However, due to its practicality and also due to the 
fact that they can help to diminish the hardening effect, they are an interesting option. In 
point to point MIMO antenna selection arise as optimal also when there is partial 
channel state information at the transmitter and rate is to be optimized. The same might 
happen in the multiuser case and it is a topic to be further researched. 
 
Partial CSIT and Multi-antenna transmitters and receivers  
 
In particular, we can ask what impact multiple receive antennas have on multiuser 
diversity, an important outcome. In general, any deterministic component that would be 
introduced in the system (e.g. receiving beamforming in a BC channel) reduces the 
multiuser gain and therefore, the benefit of using opportunistic schemes (the so-called 
hardening effect of the fading distribution).  
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With multiple transmit antennas at the base-station and multiple receive antennas at 
each of the users, with full CSI we split the information for user k into independent data 
streams, modulates them on different spatial signatures and then transmit them. The 
spatial signatures and power allocation to the users (and the further allocation among 
the data streams within a user) can be done as a function of the channel fluctuations. 
Linear strategies can be carried out or, if computational complexity is not a problem, 
Costa precoding (i.e., dirty paper or DFE precoding) can be incorporated.  
 
Without CSI (i.e., only CSIR) the transmitter has no access to the channel fluctuations. 
One of the important conclusions is that time sharing among the users achieves the 
capacity region in the symmetric BC channel with CSIR alone. Note that since the 
statistics of the user channels are identical, if user k can decode its data reliably, then all 
the other users can also successfully decode user k’s data, concluding that the sum of 
the rates at which the users are being simultaneously reliably transmitted  is bounded by 
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This implies that the total spatial degrees of freedom in the BC channel are restricted to 
one instead of the min (nt, Ntot) that can be reached with full CSIT. Thus lack of CSI at 
the base station causes a drastic reduction in the degrees of freedom of the channel.  
 
With partial CSIT opportunistic schemes are an attractive alternative but it would be 
desirable to obtain intermediate solutions between those schemes and the optimal DP. 
To that purpose we recall the superuser transmitter formulation of precoding matrix B 

 
 
Where we extend the design of each of the matrixes as follows: V is the beamforming 
matrix, build up with no channel state information. It can contain either nt orthogonal 
beams; thus, N=nt, or more than nt beams. In this case, Grassmanian manifold can be 
used to optimized the design of the quasiorthogonal beams. The role of more beams 
than antennas is when the low number of antennas hinders capacity and transmission to 
more users than antennas increase capacity if thanks to multiantennas at reception allow 
for interference cancellation at the receiver.  
 
Matrix Σ  accounts for the power allocation, which is a topic still unaddressed in 
opportunistic SDMA. Finally matrix M controls the selection of users and the 
association of each user with a transmitting beam. For instance, in an opportunistic 
system M will chose those users whose spatial channel is as much orthogonal as 
possible, thus achieving null interference. 
 
Next figure plots a MIMO BC system with nt transmit antennas and Ntot>= nt users 
each with Nk receive antennas. The plot shows the proposed general scheduler. 

ntxNntxN ntxN NxNtotB = V S M
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Figure: MIMO BC scheduler 
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IX.5. CONCLUSIONS 
 
While the wealth of references and results gives the impression that the problem of 
MIMO multiuser is by now mature from both the information theory and 
communications aspects. We believe that such an interpretation is misleading. In fact 
the many unsolved problems, some strongly motivated by practical applications and 
implications remain and some, such as the role of the CSI at the transmitted and optimal 
MIMO BC strategies in the presence of partial CSI , are explicitly mentioned in the 
sequel. We believe that this topic still calls for intensive research addressing many 
fundamental problems, which are not yet fully understood. 
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APPENDIX A.  
Detailed computation of the optimal precoding in BC 
 
Departing from section IX.3.3.1 and before getting into the design, let us reformulate 

the MMSE noise correlation matrix ( )-1TH H + I% % . Let us consider the Cholesky 

factorization of the MMSE noise matrix 
 

( ) ( )-1-1-1 -1 -T T T T T T -1G ? G = H H + I = M S V H Q ? QHV S M + I% %  

Now, choose a square matrix C, such that 
 

( )-1
T T T T -1C C = S V H Q ? QHV S +I  

 
in general C=UR, where U is an orthonormal matrix and R an upper triangular one. 
 
Then the Cholesky factorization can be written as 
 

-1 -1 -T T T TG ? G = M R U URM  
 
where URM is upper triangular. 
 
Now the GDFE is used for the receiver implementation. Although, we show later in 
section IX.3.3. 2.and IX.3.3. 3. that GDFE has nice optimal features, note that the 
GDFE error e’i that is obtained when recovering each of the transmitted signals is 
decoupled, in contrast to the MMSE error. Therefore, we expect that GDFE would help 
in the decoupled receiver design better than the MMSE.  
 
Recall that the feedforward filter, which we call F is 
 

-1 -T T -1/2F = ? G H ? Q%  

 
 

Figure: GDFE reception 
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Now a block diagonal structure is imposed on F 
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where UR can be obtained. Finally, an appropriate transmit filter B = V S M is 
found by obtaining an M that makes URM block upper-triangular. This is possible by 
the following QR-factorization: T TR U =MK , where K is lower triangular and M is 
orthogonal. Then TURM = K  is upper-triangular. Note that 

( )-1
T T T T -1R R = S V H Q ? QHV S + I  

 
 
There are still the question to answer before obtaining a complete precoding design:  

- the design of the block diagonal matrix 
 
Design of the block diagonal matrix 
 
Next we show that the condition under which there exists a suitable UR to make the 
feedforward filter F block-diagonal, and therefore suitable for non-cooperative receivers 
as in the BC channel, is the same as the diagonalization condition on the noise 
covariance matrix 
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where 1

i
−F  are positive semi-definite matrices and are the dual variables associated with 

the block-diagonal constraints of the max-min problem. 
 
In order to get some insight in the meaning of  constraint (**), note that this conditions 

is equivalent to ( )  
+  

  

-1 1T
x

2

F 0
I HR H =

0 F
% % , thus imposing block diagonal structure on 

the correlation matrix of the received signal after the whitening filter. 
 
 
 
The condition under which there exists a suitable UR to make the feedforward filter F 
block-diagonal is the same as the diagonalization condition on the noise covariance 
matrix 
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APPENDIX B 
 
Decision Feedback precoder is capacity lossless 
 
Recalling in the figure the DFE receiver structure that has been presented in the MAC 
section. Next we show that the feedforward filter can be implemented in the transmitter 
(if CSIT is available) without losing capacity with respect to the DFE.  
 

 
Let us depart from the MAC channel model 

[ ]   
   
   

1 1
1 2

2 2

x z
y = H x + z = H H +

x z
(*) 

 
and consider the output of the feedforward filter, v=[v1 v2]T . The goal is to compute 
the achievable rates of the two subchannels: form x1 to v1 and from x2 to v2. If they are 
the same as the rates from x1 to x1’ and from x2 to x2’, which are the rates of the 
lossless MMSE, no capacity loss is incurred by implementing a DFE precoder. In other 
words, we are interested in proving that: 
 

?

1 1 1 1 1

?

2 2 2 2 2

( ; ) ( ; ' )

( ; ) ( ; ' )

R I X V I X X

R I X V I X X

= =

= =
 

 
To prove it note that 

( )-1 -T T -1 -T T -1 -T Tv = ? G H Hx+? G H z = ? G H H x + z  
If x = x’+e’ then ' = +x v (I-G)x  
 
Note that '

2 2x = v  thus 
 

2 2 2 2 2 2( ; ) ( ; ' ) ( ; )R I X V I X X I X Y= = =  
Now, consider the subchannel from x1 to v1 with x2 available at the transmitter instead 
of at the receiver 1 1 2( ; / )I X V X  
By substituting for the transmission model in (*) as it was done for the MAC channel, 
we obtain 
 

x
H

z

y
HT

w -1 -T? G

I-G

+
-

x’

1-G

DFE
x

H

z

y
HT

w -1 -T? G

I-G

+
-

x’

1-G

DFE

v
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( ) ( )=

' -1
1 11 1 22 1

-1-1 ' -1 T T
1 11 1 1 1 1 1 1 1 1 2 2 1

x = ? w - G x

v = ? w + e R + H H H H x + H x + z
 

 
being w the output to the matched filter to the channel 
 

2 2

2 2 2 2

 +
=  

+  

T T
1 1 1 1T

T T
1 1

H H x H H x
w = H Hx

H H x H H x
 

 
and we obtain 

( )-1' -1 T T T
1 1 1 1 1 1 1 1x = R + H H H (H x + z )  

 
Observe that v1=x1’+H2 x2 as x1’ and x2 are independent (since, x1, x2 and z1 are jointly 
independent) 
 

R1= I(X1;V1/X2)= I(X1;X1’)= I(X1;Y/ X2) 
 

where, the last equality was shown in the MAC channel section and proves that a 
precoder designed in order to obtain R2=I(X2;Y) and R1=I(X1;Y/ X2) achieves the same 
capacity as a DFE equalizer: R2=I(X2;X2’) and R1=I(X1;X1’) 

 
Therefore, 
 

I(X1 X2;Y)= I(X2;Y)+I(X1;Y/ X2)= I(X2; X2’)+ I(X1; X1’) 
 

or, depending on the precoding order 
 

I(X1 X2;Y)= I(X1;Y)+I(X2;Y/ X1)= I(X1; X1’)+ I(X2; X2’) 
 
Interference cancellation may occur at the transmitter by pre-subtracting x2 form x1. 
Pre-subtraction achieves the exact same capacity as a decision feedback equalizer. In 
conclusion, the DFE precoding as shown in the next figure is capacity lossless.  
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APPENDIX C 
 
Uplink-downlink SINR duality 
 
Restricting to linear beamforming strategies for the downlink and to linear detection 
strategies for the uplink, let F denote the linear transmitter matrix and FH denote the 
linear receiver matrix, respectively. Without loss of generality, we can assume the 
normalization 1H

jj
  = FF  for all j. With this normalization, the input power constraint 

is given simply by bc
k

k

P P≤∑ . The SINR for user i in the BC channel is 

2

, 1

bc
i ii

b c i ijbc ij
j ij

j i

P
SINR

P
φ

φ
φ

≠

= =
+∑

HF  

In the dual MAC, the output of the linear detector of user i is given by the i-th element 
of the vector  FHyMAC. The SINR for user i is given by 
 

, 1

mac
i ii

m a c i mac
j ij

j i

P
SINR

P
φ

φ
≠

=
+∑

 

Suppose that target SINRs γ1…γm are required in both the BC and its dual MAC. The 
system of equations i iSINR γ≥  can be written in compact matrix form as follows. 
 

Let [ ]1 1 (1 )
T i

i
i ii

a a a
γ
γ φ

= =
+

a L  

Then the SINR equations for the BC take on the form 
[ ]( ) bcdiag− ≥I a F p a  

For the MAC take on the form 
 

( ) T MACdiag − ≥ I a F p a  

The SINR vector γ  is feasible for both BC and MAC with linear processing matrix F if 
and only if the non-negative matrix diag(a)Φ  has Perron-Frobenious eigenvalue 
ρ(diag(a)Φ )<1. In this case, the solutions 
 

[ ] 1
( )bc

opt diag
−

= −p I a F a  
and 
 

1
( )mac T

opt diag
−

 = − p I a F a  

 
of the BC and MAC power allocation equations are the componentwise minimal power 
allocation that meets the γ  with equality. Moreover , ,

bc mac
o p t i o p t i

i i

p p=∑ ∑  

AS an immediate corollary we get that, a SINR vector γ  is feasible if and only if 
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[ ] 1
,

( ( ) ) 1

( )bc T
o p t i

i

diag
and

p diag P

ρ

−

<

= − ≤∑

a F

1 I a F a
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